
BOUNDARY SHEAR STRESS AND ROUGHNESS 
OVER MOBILE ALLUVIAL BEDS 

By Peter J. Whiting1 and William E. Dietrich2 

ABSTRACT: The resistance to flow in the turbulent rough-flow range depends pri
marily upon the size, shape, and arrangement of the granular material making up 
the boundary. We have estimated the hydraulic roughness of mobile alluvial sur
faces by inverting sediment-transport formulas to solve for the local boundary shear 
stress required to predict the observed sediment flux and size. Inserting this shear 
stress value and a near-bed velocity measurement into the law of the wall yields 
the roughness scale, z0, defined as the height above the bed where velocity goes 
to zero. If the roughness is related to the coarse fraction of the bedload, such as 
DM, then z0 = 0.1DM. This roughness, obtained from mobile, naturally packed, 
and heterogeneous-in-size beds is three times greater than that predicted by the 
Nikuradse formula developed from nearly uniform and smoothly packed surfaces. 
We detect no variation in roughness with transport stage, implying that the large 
static and slowly moving grains determine flow resistance and that momentum 
extraction by saltating grains is minor. Application of this simple roughness al
gorithm allows convenient and accurate calculation of the local boundary shear 
stress. 

INTRODUCTION 

For the purposes of examining the mechanisms that control evolution of 
bed topography and sorting processes, local accurate data on boundary shear 
stress fields are essential. In particular, the local boundary shear stress re
sponsible for sediment erosion and deposition must be defined. Such data, 
however, are rare in field studies. Until relatively inexpensive and durable 
instruments are developed for directly measuring near-bed velocity fluctua
tions such that the Reynolds stress can be calculated, the local boundary 
shear stress in the field must be estimated by some indirect method that relies 
on theoretical or empirical arguments. The most widely used procedures are 
based on either the assumption that the boundary shear stress can be esti
mated from the local horizontal component of the pressure gradient force or 
the assumption that it can be calculated from velocity profile measurements 
and the law of the wall. 

The first assumption requires convective accelerations to be small; in riv
ers with complex topography this is generally not correct (Dietrich and Whit
ing 1989). It also requires accounting for resistance due to bedforms such 
as bars, dunes, and ripples (Einstein and Barbarossa 1952). In the second 
assumption, velocity measurements are used to define the gradient of ve
locity above the bed, and the local boundary shear stress, T;,, is calculated 
from the law of the wall  
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Tb = pUl = p(«zK)2( In - 1 (1) 

where uz = the velocity at height z above the boundary; p = the fluid density; 
K = von Karman's constant equal to 0.40; t/* = the shear velocity; and z0 

= the height above the bed where velocity is projected to go to zero. Con
siderable error arises with application of this procedure because boundary 
shear stress is extremely sensitive to the gradient of velocity. Both accurate 
velocity measurements and exact elevations above the presumed bed level 
are difficult to obtain in most field studies. Our experience has been that 
repeated velocity profile measurements with long sampling intervals (many 
minutes) for individual points yield highly variable estimates of boundary 
shear stress. This is true even in simple, steady, uniform flow over a fine 
gravel, where the depth of flow was much greater than the coarsest grain 
size on the bed, which was static or only weakly mobile. Often these cal
culated shear stresses were clearly in error (much greater or much smaller 
than reasonable estimates). In addition, such profiling is so time-consuming 
as to be impractical in rivers with fluctuating discharge. 

A convenient solution to this problem may lie in using a single near-bed 
velocity measurement in the law of the wall (Eq. 1), employing an argument 
for boundary roughness as a function of grain size. The advantage of a single 
near-bed velocity measurement is that it can be done quickly, and by being 
close to the boundary, it can avoid the strong influences of upstream rough
ness features such as dunes or bank irregularities. The difficulties of this 
approach lie in ascertaining that the near-bed boundary flow is indeed log
arithmic, and in developing a general roughness argument that uses local 
grain-size distribution for scaling. 

Precedent exists for this approach. Decades of research in laboratory flumes 
often employed Preston-tube measurements and an assumed or calculated 
drag coefficient to estimate local boundary shear stress from single mea
surements (Ippen and Drinker 1962; Hooke 1975), and some work has been 
accomplished in rivers (Nece and Smith 1970). Average velocity for a ver
tical in a channel cross section has often been used in the vertically averaged 
form of the law of the wall (Eq. 1) to relate shear velocity and roughness 
following Keulegan (1938) 

[/* 0.4H 
U = —\n —— 

K AD, 

30 

where U = the vertically averaged flow velocity; H = the depth of flow; A 
= an empirical coefficient; and Dx = some representative size of the bed 
material. The roughness height is linked to the size of sediment following 
Nikuradse (1933). 

A number of workers have suggested roughness values (ADX) from em
pirical studies: Leopold et al. (1964), Bray (1979), and Hey (1979) sug
gested 3.5D84; Limerinos (1970) suggested 2.8D84; and Gladki (1979) sug
gested 2.5D80. The subscripts denote the grain diameter for which 65, 84, 
or 90% are finer. Most of these empirical data are from reaches of rivers 
where the effects of dunes, bars, or channel planform add to the total re
sistance to flow. Prestegaard (1983) has reported that bar resistance alone 
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FIG. 1. Surface Texture of: (a) Nikuradse's Smoothly Packed and Uniform-Size 
Grains on Pipe Wall; (b) Naturally Packed and Poorly Sorted Grains on Bed; and 
(c) Mobile Bed Like Fig. 1(b) Flow Is Left to Right. In Fig. 1(a) Thin Coat of Lacquer 
Covered Grains but Was Ignored for Clarity of Figure 

can account for 50% of the total resistance. Parker and Peterson (1980) show 
that the proportion of the total drag exerted by bars increases as the stage 
drops. 

More recently, Dietrich (1982) proposed using a single-velocity measure
ment and a theory based upon Smith and McLean (1977) to calculate rough
ness to map boundary shear stress in rivers. Application in a sand-bedded 
river bend proved to be quite successful (Dietrich and Smith 1983). The 
Smith and McLean roughness argument was built upon the earlier work by 
Owen (1964), hypothesizing that a layer of saltating grains acts to resist the 
flow by the wakes shed from accelerating grains, and that the magnitude of 
corresponding roughness is proportional to the thickness of the saltation layer. 

Our work in gravel-bedded rivers and our reconsideration of work in the 
sand-bedded site by Dietrich suggest this roughness analysis needs to be 
argued differently. Consider Fig. 1, where we sketch the simple surface of 
uniform grains used by Nikuradse (1933) to relate geometric roughness to 
hydraulic roughness, a naturally packed heterogeneous-in-size static bed, and 
its mobile counterpart. The Nikuradse (1933) experiments were for a special 
case of nearly uniform sediment (0.78 mm-0.82 mm) floated in a layer of 
lacquer and covered by a thin coat of lacquer such that the variation in grain 
heights was minimal [Fig. 1(a)]. The uniformity of size and the regular ar
rangement of the grains on the Nikuradse surface minimize its roughness. 
The Nikuradse relation is commonly applied in the field in spite of the ob
vious differences between the artificial [Fig. 1(a)] and the natural surface 
[Fig. 1(b)]. The natural surface is composed of individual particles of dif
fering size loosely packed in an irregular pattern [Fig. 1(b)]. The tops of 
grains project to different heights above the average bed level because of 
the variety of pocket geometries in which grains sit, and because of the 
differing size of the grains. The largest-diameter grains protrude the farthest 
above the average bed level and consequently expose the greatest surface 
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area to the flow. Alluvial surfaces often exhibit clusters of grains that project 
substantially above the bed level. Clusters of a few grains, called clast jams 
(Brayshaw et al. 1983), and broader mobile clusters of many grains, called 
bedload sheets (Whiting et al. 1988), further roughen the alluvial surface. 
The momentum of the flow is dissipated in proportion to the magnitude of 
the squared velocity and the area exposed to flow, hence, these larger grains 
and clusters should dominate the flow resistance. Now consider the geometry 
of a poorly sorted bed with grains in motion over the bed (Fig. lc). The 
irregular surface of various-size grains and clusters of grains projects above 
the bedload layer defined by the tops of the trajectories of the saltating grains. 
In addition, the largest grains are moving much slower than the fluid, hence, 
momentum extraction is like the static case. Thus, we might expect the fric
tion of static and mobile beds to be rather similar. 

Here we report analysis of additional data collected from Muddy Creek 
and data from gravel-bedded Duck Creek, which suggest that for mobile and 
static beds D84 is a useful scale for roughness, as might be inferred from 
Fig. 1. The analysis is performed by using a procedure similar to Dietrich 
(1982), but without linking the roughness to the saltation height; we inves
tigate the roughness as it varies with the grain size and transport, inverting 
sediment transport formula to estimate the local boundary shear stress that 
must have been acting to transport the observed sediment flux. For the mea
sured near-bed velocity and bedload size, the law of the wall is solved for 
the roughness scale and this related to the size of sediment. 

THEORY 

In the region near the bed, sufficiently far from the boundary that the 
wakes shed from individual grains of roughness are well mixed, and suffi
ciently close to the boundary that the fluid is unaffected by larger scales of 
roughness (ripples, dunes, and bar-pool topography), the velocity distribu
tion for steady, uniform flow is logarithmic and the boundary shear stress 
can be determined from the law of the wall (Eq. 1). 

Another way to estimate the local boundary shear stress is to invert sed
iment-transport formula to solve for the stress required to predict the ob
served amount of sediment transport. A variety of formulas to predict bed-
load transport exist that give reasonable results (Meyer-Peter and Muller 1948; 
Einstein 1950; Yalin 1963; Fernandez Luque and van Beek 1976). One of 
the most successful formulations was proposed by Meyer-Peter and Muller 
(1948), modified by Fernandez Luque and van Beek (1976) and can be writ
ten as 

= P.[*>f 5.7(T* - T*,,.)1'5 (2) 

where Qb, — the mass rate of bedload transport per unit width; ps = the 
sediment density (not including porosity); D = the median grain diameter; 
T* = the nondimensional shear stress [T* = Tb/(ps — p)QD]; and T*^ = the 
critical nondimensional shear stress for incipient grain motion, which varies 
between 0.032 and 0.060 for sand and gravel, following Vanoni (1964) and 
as reproduced in Middleton and Southard (1984). In the case of heteroge
neous grain sizes, we will assume that for all the grains on the bed T*„ is 
scaled by that for D50. 
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Combining Eqs. 1 and 2, yields the following equation for the roughness 
scale (z0) needed to predict the transport rate given the near-bed flow velocity 
and the size of material in transport 

z„ = ze_p (3) 

where 

P = 
T*cr + 

QM 

5.7Ps( g D ; 

p 

0 . 6 7 - , . 0 .5 • 

I r, P* ~ P \ 
I go \ 

(4) 

We now have a hydraulic roughness estimate based upon inversion of the 
Fernandez Luque and van Beek transport formula (1976) and measurement 
of sediment transport, flow velocity, and sediment size. In order to relate 
this estimate of hydraulic roughness to the geometry of natural beds, we 
must select some geometric property to describe the granularity of the bed. 
Ideally this measure would quantify the differential projection of grains into 
the flow as influenced by packing, size heterogeneity, and clustering. A 
logical and practical descriptor of the surface microtopography is the size of 
the constituent elements. If the basic formulation of Nikuradse (1933) is 
retained and the roughness is related to some measure of the size of the 
sediment, we write 

K 

*-n* <5) 

Nikuradse related to the size of z0 to the dimensions of the grain, now called 
the equivalent sand roughness (ks), as it varied with the Reynold's roughness 
number, R* = £/*crfcs/v, where v is the kinematic viscosity. When R* < 5, 
the surface is described as hydraulically smooth and z0 = v/9£/*. When 5 
< R* < 70, ks/z0 is 30-50. And when R* > 70, the bed is described as 
hydraulically rough and ks/z0 = 30. 

For uniform sediment, ks is the size of sediment. For nonuniform sedi
ment, the median is not necessarily the best descriptor of the scale of the 
roughness. A number of workers have argued that the disproportionate effect 
of large grains by their projection should be incorporated by characterizing 
the equivalent sand roughness as some larger-than-median measure of the 
size distribution. Einstein and El-Samni (1949) suggested D65; Leopold et 
al. (1964) and Hey (1979) suggested D84; and Limerinos (1970) and Parker 
and Peterson (1980) suggested Z)^; where the subscript denotes the grain 
diameter for which 65, 84, or 90% are finer. For historical and statistical 
reasons we set ks proportional to the DM of the sediment 

K = ADM (6) 

The coefficient (A) is used to incorporate the effects of grain clusters, dif
ferential projection of the heterogeneous grains, and nonsystematic packing 
of the surface. For the nearly uniform Nikuradse surface, A should have a 
value of 1.0. 

Since we have explicitly linked the hydraulic roughness scale to the size 
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of the bed material, it is appropriate to discard the functional dependence 
on R*, at least for coarse sand and gravel, and rewrite Eq. 5 as 

Consequently the coefficient A additionally incorporates any deviation from 
a value of 30 (in the denominator of Eq. 7) with Reynolds roughness num
ber. 

For the case of a known transport rate, flow velocity, and sediment size, 
Eqs. 3 and 7 can be combined to estimate the value of the A coefficient 

30 B 

A = z — e-* (8) 
£>84 

Other transport equations can be used similarly to solve for the roughness 
scale; however, most other formulas require iteration because the shear stress 
term cannot be isolated. 

FIELD SITE AND METHODS 

Several data sets we have collected for the study of bedload transport me
chanics are of sufficient detail and accuracy to be useful for the examination 
of roughness. At two sites, over a sand bed and a gravel bed, and for a 
broad range of transport stages, we have detailed information on the flow, 
the material making up the bed surface and bedload, and the transport rate. 

Muddy Creek, a clear-flowing, sand-bedded meandering channel in Wy
oming, has been studied for more than a decade by Dietrich to understand 
equilibrium topography in channel bends (Dietrich and Smith 1983, 1984; 
Dietrich 1987; Dietrich and Whiting 1989). The channel is 5.5-m wide and 
0.4-m deep. The bed is covered by three-dimensional dunes, which in the 
deeper water of the pool have a wavelength of 1-2 m and height of 0.05-
0.10 m. In shallower waters of the pointbar top, these features were thinning 
and lengthening. Over the stoss side of the dunes in the coarser sediment, 
thin (1-2 grains high) bedload sheets migrate to the dune crest causing short-
term fluctuation in transport rate and grain size (Whiting et al. 1988). The 
collected bedload at Muddy Creek had a median diameter of 0.68 mm and 
a DM of 1.45 mm. The bedload, bed-surface, and subsurface-size distribu
tions are similar due to the vertical mixing associated with dune passage. 
Suspended loads are small in this channel. Transport stage (T*/T*C/.) values 
presented here range from 2 to 12. A total of 465 measurements collected 
over a span of three years are included in this analysis. 

Duck Creek is a clear-flowing, gravel-bed irrigation channel in Wyoming. 
The straight reach studied is 6.0-m wide and 0.5-m deep. Our studies of 
sediment-transport mechanics led to the identification of bedload sheets 
(Whiting et al. 1988) and motion-picture quantification of gravel-transport 
modes and rates (Drake et al. 1988). The study of sediment-transport me
chanics included repeated measurement of the near-bed flow velocity and 
the sediment transport. The median diameter of the bedload collected at Duck 
Creek was 5.1 mm, whereas D84 was 7.7 mm. The bedload and bed-surface 
size were similar; the average ratio of the median bed-surface size to median 
bedload size was 1.04. The transport stage was generally less than 2. We 
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used 177 measurements from Duck Creek. 
At both sites, a similar methodology was used in the measurement of sed

iment transport and near-bed flow velocity. A single-impellor current meter 
suspended from a bridge spanning the channel was positioned near the bed 
and was constantly observed to maintain its elevation with respect to the bed 
as erosion or deposition occurred. The meter consists of a 3.5-cm-diameter 
rotor housed in a 4.2-cm-diameter support ring. Small magnets are embed
ded in two of the four blades of the rotor; as the rotor spins, a sensor notes 
the variation in the magnetic field, and the number of revolutions is recorded 
on a counter. The meters have an accuracy of ±0.3 cm/s or 1.2%, which
ever is greater (Smith 1978). Flow velocity was measured for 50-100 sec 
every 1-2 min for periods of 60-90 min. The open design of the current 
meter allowed it to be placed near the bed without scour. We held the meter 
just above the top of the bedload layer, which was equal in both channels 
to the height of the largest grains rolling on the bed. Occasionally, velocity 
profiles were made to estimate separately the local boundary shear stress. 

Bedload transport was measured with a small sampler held laterally ad
jacent to the current meter; collection took place simultaneously with ve
locity measurement. This hand-held sampler is similar in design to a Helley-
Smith sampler (Helley and Smith 1971) but has a smaller 2-cm square orifice 
(Dietrich and Smith 1984). The sampler was continuously observed during 
collection and thus could be oriented at all times in the direction of local 
transport. If any scour was observed associated with measurement, the sam
ples were discarded and the measurement repeated. The sampler's efficiency 
is near 100% based upon comparison with flux determined from both motion 
pictures (Drake et al. 1988) and from dune migration (Dietrich and Smith 
1984). Sample sites at Muddy Creek were concentrated near dune crests and 
on the flatter portions of the channel in order to minimize near-bed influence 
of low-momentum fluid shed from the upstream dune. Sample sites at Duck 
Creek were away from the banks in relatively flat-bed portions of the chan
nel. Periodically, the sampler was used to scoop sediment from the bed sur
face. Sediment samples were returned to the lab for drying, weighing, and 
size analysis. The size distribution of the Muddy Creek samples was char
acterized by settling velocity determination in a 144-cm-long tube (Dietrich 
1982). The Duck Creek samples were sieved into quarter-phi fractions for 
size determination. A total of 642 coupled bedload and velocity measure
ments from both channels are included in this analysis. 

BEST-FIT COEFFICIENT OF ROUGHNESS 

The coefficient A minimizing the root mean square error in shear stress 
prediction {[2(log T*^ - log T*.obs.)

2/N]0'5} for different data sets and for 
three different transport formulas is presented in Table 1. T*.obs. is the di-
mensionless local boundary shear stress that must have been acting to trans
port the observed flux, and T#pred is the dimensionless stress from incorpo
ration of the roughness algorithm (Eq. 7) in the law of the wall (Eq. \). N 
is the number of measurements. Table 1 also presents the minimum root 
mean-square error for each case. The three transport equations for which the 
value of coefficient A was calculated were Fernandez Luque and van Beek 
(1976), Yalin (1963), and Einstein (1950). A variety of additional bedload 
equations could have been tried. The commonly used Parket et al. (1982) 
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TABLE 1. Coefficient A Minimizing Root Mean Square Error In Shear Stress Pre
diction for Various Data Sets and Transport Formulas 

Fernandez Luque and 
Dataset N Einstein formula van Beek formula Yalin formula 

(1) (2) (3) (4) (5) 

Muddy Creek 465 4.20 (0.16) 2.94 (0.11) 2.08 (0.09) 
Duck Creek 177 1.98 (0.09) 2.96 (0.11) 3.53 (0.10) 
Combined 642 2.51 (0.18) 2.95 (0.11) 2.66 (0.11) 

Note: Numbers in parentheses are root mean-square error. 

equation was not used because of the exclusion of sand in their analysis. 
Minimization of root mean-square error in T*, as opposed to transport rate, 

was performed because stress is ultimately what we aim to predict with the 
roughness algorithm. Moreover, because the Fernandez Luque and van Beek 
(1976) transport formula contains a critical shear stress term, it is statistically 
problematic to address transport predictions that are zero because stresses 
are subcritical. 

The range in A values using the variety of transport formulas is moderately 
large for individual data sets from each channel (2.08-4.20) but similar when 
data from both channels are combined (2.51-2.95). The Einstein formulation 
has the broadest range of values for the different data sets (2.08-4.2) and 
the largest root mean-square error for the combined data sets (0.18). The 
Yalin formulation has a smaller range of values (2.1-3.5) and a smaller root 
mean-square error (0.11). The Fernandez Luque and van Beek equation gives 
consistent A values near 2.95 for both data sets and a mean-square error of 
0.11 for the combined set that compares well with Yalin and is much su
perior to Einstein. Root mean-square errors were larger when we allowed 
the ratio kjz0 to vary with R* as in the original Nikuradse formulation than 
when we kept ks/z0 = 30. If T*cr varies between 0.032 and 0.050, as sug
gested by Yalin (1963), instead of between 0.032 and 0.060, as suggested 
by Vanoni (1964), A values will be up to 30% smaller for the Duck Creek 
data near critical boundary shear stresses. The Muddy Creek data is rela
tively insensitive to this uncertainty because conditions are farther from crit
ical. 

Because of the consistent coefficient value of 2.95 for the different data 
sets using the Fernandez Luque and van Beek equation and the comparable 
low root mean-square error, we consider this to be the best value for further 
considerations. The use of this roughness value, the Fernandez-Luque and 
van Beek transport equation, and the measured near-bed velocity, reveals no 
systematic scatter in calculated dimensionless shear stress (T*pred) and ob
served dimensionless transport about the Fernandez Luque and van Beek 
formula (Fig. 2). 

The ratio of the shear stress calculated with the roughness algorithm, Eq. 
8, to the shear stress required to predict, with the Fernandez Luque and van 
Beek formula, the observed sediment transport for the measured near-bed 
velocity and sediment size shows weak structure as a function of D84, flow 
velocity, dimensionless transport rate <J> = Gw/lpiQ^Ap* - p/p)]05}, and 
stress from inversion of transport (T*.obs-) [Figs. 3(a-d)]. This residual struc
ture is within the variance of the data, hence, it is not examined further. 
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FIG. 2. Fernandez Luque and van Beek Transport Relation (Dashed Line) Com
pared to Shear Stress Predicted from Eq. 9 and Observed Dimensionless Trans
port 

Apparently the coefficient selected is indistinguishable from a constant value 
across the range of variables and is not the median value of a systematically 
varying coefficient. 

Within the error of this analysis, the hydraulic roughness from Eq. 7 can 
be written as z0 = 0. IDU. Rewriting Eq. 1 to incorporate these results, the 
local boundary shear stress is 

a) 
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FIG. 3. Residuals in 1*^/7*01,- versus: (a) Du; (b) Near-Bed Flow Velocity; (c) 
Dimensionless Transport Rate; and (d) T*.obl 
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th = P(«2K)2 In — ) (9) 

ANALYSIS 

A number of researchers have reported equivalent sand roughness values 
(ks) larger than those of Nikuradse. Ikeda (1983) found ks = 1.5Dg4 for well-
sorted mobile coarse sand in a flume. Hammond et al. (1984) found a rough
ness value of ks = 6.6D50 for a range of stresses on an offshore gravel bed. 
They noted only a very slight increase in roughness as the surface became 
mobile. Van Rijn (1982) analyzed other workers' field and flume lower-
plane-bed data and found an equivalent sand roughness near 3Dgo. He could 
not discern an effect of transport stage in the large scatter of roughness val
ues. 

Wiberg (personal communication, 1989) recently calculated the roughness 
of static heterogeneous beds by partitioning the shear stress into components 
acting on the fluid and on the obstacles in the flow and concluded that the 
static roughness is approximately z0 = 0.1 \DM. 

The results from Muddy Creek and Duck Creek would seem to corroborate 
earlier suggestions that the roughness of mobile surfaces may be unaffected 
by the mobility of grains. We cite as evidence the ratio of local boundary 
shear stress predicted from the roughness algorithm to the stress required to 
predict the observed flux [Fig. 3(d)]. If mobility of sediment significantly 
raised the roughness, we expect that use of a single-valued coefficient de
pendent only upon grain size would strongly underestimate roughness, hence, 
underestimate the stress at larger dimensionless transport rates, (|>. This is 
not what is seen; what we do see is that any systematic deviation from a 
constant roughness is within the variance of the data. 

The constancy of A over four orders of magnitude of dimensionless trans
port, our observation and calculation of low grain trajectories and concen
trations, and our visual observations of static and mobile beds have led us 
to question the importance of momentum extraction by saltation at least for 
the majority of lower transport stage flows. Owen (1964), working on eolian 
saltation, argued that the number of grains in motion was adjusted so that 
the cumulative extraction of momentum was sufficient to lower the stress at 
the boundary to the critical value for motion. In contrast, our observations 
suggest the stochastic nature of sediment transport; 70% of the flux at Duck 
Creek was associated with sweep events (Drake et al. 1988), presumably 
when parcels of higher momentum fluid impinged upon the bed. At Duck 
Creek, we saw the transport as isolated events in both space and time; we 
could see no local balance between the entrainment and distrainment of grains. 

Owen (1969) related the extraction to the thickness of the saltating layer. 
Because a particle's trajectory depends upon the ratio of shear stress to that 
particle's critical shear stress for motion, large particles tend to just roll along 
the bed, whereas smaller grains hop several grain diameters into the flow 
(Wiberg and Smith 1987). Following Wiberg and Smith, our calculations 
suggest that the tops of the larger rolling grains are equal or higher than the 
tops of the trajectory of the smaller grains. Detailed near-bed profiles of 
sediment transport at Muddy Creek made with stacked arrays of 2-cm aper-
ature samplers (spaced at intervals of 0.5 cm above the bed) show that the 
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amount of sediment collected 0.5 cm above the bed is two orders of mag
nitude less than collected at the bed. Given that the coarsest particles in 
motion are rolling along the bed, they are essentially static with respect to 
the flow. We suggest that although these mobile coarse grains may extract 
some momentum from the fluid, their effect is equivalent to and largely 
indistinguishable from the static grains of the bed. At higher T* values than 
reported here momentum extraction apparently is important (Wilson 1989). 
Interestingly, near the lower bounds of the study of uniform sediment, where 
the transport stage was 30, Wilson estimated that ks ~ 3D50, a result similar 
to ours. 

Intermediate between the conditions of our study and the study by Wilson 
(1989) are the conditions used in the analysis of mobile bed roughness by 
Wiberg and Rubin (1989). They wrote z0 = z0s + z0„, where the roughness 
was comprised of additive terms representing the effect of static grain drag 
(z0„) and saltating grain drag (zQ) [a procedure also used by Dietrich (1982)]. 
Using the upper-plane-bed data of Guy et al. (1966) (D50 = 0.19-0.33 mm, 
transport stage = 10-30), they estimated z0 from projection of the velocity 
profile to zero velocity, z0„ from the Nikuradse formula, and then solved for 
z0j. In contrast to our observations they found that momentum extraction by 
grains in saltation was significant. As alluded to earlier, the Nikuradse value 
is appropriate for very smooth beds and may not provide a good estimate 
of drag over a bed with natural packing. Moreover, the z0 values from their 
profiles are very uncertain. For a subset of data when the bed was immobile, 
the values of z0 from the profile are 0.011 cm and 0.016 cm values even 
less than the Nikuradse value of 0.022 cm. It should be noted that because 
there were typically only a few measurements of velocity within the strict 
logarithmic layer in Guy's data, Wiberg and Rubin used a formulation for 
the vertical eddy diffusion coefficient producing a profile thought to be valid 
through the entire depth, to estimate z0. Considering the uncertainty in mea
sured z0 from the velocity profile, and the likely underestimate of z0„, one 
could interpret the Wiberg and Rubin results to show no variation in rough
ness with saltation. 

We suggest an alternative view of momentum extraction over heteroge
neous mobile beds where the coarse fraction moves largely by rolling and 
where suspended load is minor. In this case, the momentum is dissipated by 
the drag of the bed in the same manner as over immobile beds. As the 
velocity of the fluid increases, the momentum extracted by the bed increases 
with greater drag on the moving and stationary grains. Finer sediment moves 
below the tops of the large grains and the tops of clusters, and the coarse 
fraction is moving sufficiently slow with respect to the fluid that the process 
of resistance to flow is indistinguishable from the static-bed case. 

This view of momentum extraction may have important implications for 
bedload transport theory. Bagnold (1936, 1973) pointed out the need for a 
dynamic mechanism to equilibrate the mobile bed. His solution was to pro
pose that the grains in motion extract just the appropriate momentum to lower 
the shear stress at the boundary to the critical value for entrainment; many 
have since endorsed this view, including Owen (1964), Smith and McLean 
(1977), Grant and Madsen (1982), Dietrich (1982), and Wiberg and Rubin 
(1989). Our data, in combination with recent studies by Drake et al. (1988) 
pointing to the important role of sweep transport and by Kirchner et al. 
(1990) defining critical shear stress variability suggest a different solution to 
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this conundrum; as the overall momentum of the flow increases, the static 
members of the coarser grains experience greater drag and become weakly 
mobilized. The boundary shear stress is not lowered to some critical value, 
rather the shear stress remains high and more grains are set in motion. 

APPLICATION OF THE ROUGHNESS ALGORITHM 

We suggest the following methodology for estimating alluvial roughness 
and local boundary shear stress based upon our experience in sand and in 
gravel channels: 

1. Estimate the D84 of the bed surface. 
2. Measure near-bed flow velocity at a known height close to the bed surface. 
3. Use Eq. 9 to calculate the local boundary shear stress. 

The D84 of the bed surface is preferably determined by sieving (or settling 
tube analysis) a scoop sample of the surface, or by point counting surface 
grains. A visual estimate may suffice, but will degrade results by its inac
curacy as shown in Fig. 4; for instance, for a reasonable velocity of 50 c m / 
s at a level 2 cm above a fine gravel bed, the stress will be known to within 
25%, if the grain size is known only to a factor of 1.5. This plot also sug
gests the sensitivity to A values; if A is incorrect by 50%, the calculated 
shear stress will be in error by 25%. We note that to calculate A values, we 
used the size of the bedload; this was appropriate since at Duck Creek and 
Muddy Creek the bed surface and bedload were similar. In many channels, 
surface armouring makes the bed surface coarser than the bedload. Over a 
clearly armoured surface at Rio Grande de los Ranchos, New Mexico (Die
trich and Whiting 1989), we used the bed-surface size and flow velocity 5 
cm above the gravel bed to calculate the local boundary shear stress with 
Eq. 9. The average value of 187 dynes cm - 2 was in close agreement with 
the independently estimated value of 205 dynes cm - 2 . This second value 
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FIG. 5. Local Boundary Shear Stress over Dune at Muddy Creek Predicted Using 
Eq. 9. Stress Profile from Assumption of Sediment Continuity and Steady Con
stant-Form Migration for Comparison. X/L Is Distance from Upstream Dune Crest 
Relative to Dune Wavelength 

was estimated by isolating, from the total boundary shear stress following 
Nelson and Smith (1989), the local boundary shear stress actually exerted 
on the bed. 

Near-bed velocity should be measured with an accurate meter and for suf
ficient time to average short-term fluctuations. Our experience in sand and 
gravel channels suggests use of sampling intervals of at least 50-100 sec. 
Measurements should be made below a height that is two-tenths the flow 
depth in the region where the law of the wall holds, and sufficiently far from 
the boundary that wakes of individual particles have coalesced to give a 
consistent profile. We have found that over coarse sand and fine gravel, 
velocity measurements near 2 cm above the bed give a good result. If it is 
possible to measure carefully the sediment transport along with near-bed flow 
velocity, we suggest recalibration of the roughness algorithm to the partic
ular texture of the studied surface. 

Among the variety of techniques for estimating local boundary shear stress 
(Dietrich and Whiting 1989), the approach presented here has several ad
vantages. As an example, in Fig. 5, we have plotted the variation in stress 
over a dune at Muddy Creek calculated with the roughness algorithm (Eq. 
9). For comparison, we have also plotted the stress profile required by sed
iment continuity [dQbt/Ss = (1 - p)psdz/dt] assuming steady and constant 
form migration so that the transport rate at the dune crest Qu = (1 - p)pshUCKSt, 
where h is the dune-crest height and t/crest is the dune-crest migration rate. 
Since the suspended load is minor in this channel the conservation of bedload 
should accurately describe the migration rate of the dune. For calculating 
the shear stress from the dune migration, we assume the measured average 
Dso of 0.70 mm does not vary over the dune. The roughness algorithm and 
the law of the wall predict a pattern of increasing local boundary shear stress 
that is corroborated by the continuity-based stress prediction. An alternative 
estimate of the shear stress from the slope of die velocity gradient using the 
law of the wall does not work particularly well because in order to have 
sufficient points to constrain the profile for the typical size of current meters, 
the profile projects well into the flow and includes larger-scale drag (Dietrich 
and Whiting 1989). This overestimates die stress exerted on the boundary. 
In addition, unless a number of meters are stacked in a vertical array, which 
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FIG. 6. Local Boundary Shear Stress at Solfatara Creek Estimated from Eq. 9. 
Bed Elevation Contours in Meters. Water Surface Elevation Was 9.52 m 

introduces the problem mentioned previously, the measurement at a number 
of points in a profile is a time-consuming procedure. The amount of time 
required to complete a profile becomes important for the case of a migrating 
dune because migration causes successive measurements at different eleva
tions in a vertical profile to become uncorrelated. 

In another example, from Solfatara Creek in Yellowstone National Park, 
Wyoming (Whiting and Dietrich 1990), we map the local boundary shear 
stress over a midchannel bar (Fig. 6). Solfatara Creek is a 5.2-m-wide, 0.4-
m-deep gravel-bed channel. The median bed-surface grain size is 8.0 mm; 
and D84 is 16.1 mm. During the period studied, discharge was less than one-
half bankfull and the bed was largely immobile although the sensitivity of 
the surface to disturbance suggests shear stresses were near critical. Flow 
exits an upstream bend and enters a fairly straight 20-m-long reach where 
shoaling forces sufficiently strong near-bed flow accelerations that there is 
little variation in velocity for the majority of the profile, even within the 
expected logarithmic layer near the bed. As a result, velocity profiles and 
the law of the wall give unreasonably low values of local boundary shear 
stress, and unreasonably small z0 values (ks/z0 > 1,000). Alternative meth
ods of calculating the local boundary shear stress such as from the equations 
of motion or approximated by the pressure gradient force, both require a 
form drag correction for dunes, bars, and planform irregularities that by its 
formulation gives an integral, not local, estimate of the boundary shear stress. 
Moreover, the pressure gradient force could differ greatly from the local 
boundary shear stress given the flow acceleration. The roughness algorithm 
coupled with the law of the wall predicts increasing local boundary shear 
stress to the top of the bar at Solfatara Creek, which suggests the importance 
of grain-size adjustment in maintaining topography in a diverging stress field 
that would otherwise lead to planation of the topography (Whiting and Die
trich 1990). 

CONCLUSION 

The use of a single near-bed velocity measurement in the law of the wall 
and an estimate of the surface roughness provides a quick, convenient, and 
flexible method for calculating local boundary shear stress in hydraulic and 
geomorphic studies. 
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APPENDIX II. NOTATION 

The following symbols are used in this paper: 

A = roughness coefficient; 
D = grain diameter; subscript denotes % finer; 
g = gravitational acceleration; 

H = depth of flow; 
h = dune crest height; 
ks = equivalent sand roughness; 
L = wavelength of dune; 
N = number of values in root mean-square error; 

QM = bedload transport in g cm - 1 • s_1; 
p = porosity, assumed equal to 0.35; 

R* = Reynold's roughness number; U*crks/v; 
S = downstream water surface slope; 
s = downstream direction; 
t = time; 

U = vertically averaged flow velocity; 
U„ = dune crest migration velocity; 
£/* = shear velocity equal to (Tj,/p)°5; 
uz = flow velocity at height z above bed; 
x = distance downstream from dune crest; 
z = height above bed; 

z„ = height where velocity goes to zero according to the law of the wall 
(Eq. 1); 

K = von Karman's constant equal to 0.40; 
v = kinematic viscosity; 
p = fluid density; 

PJ = density of sediment material (not including pores), assumed equal 
to 2.65 g cm - 3 ; 

Tj, = local boundary shear stress; 
T* = dimensionless local boundary shear stress; T(,/[(ps — p)g£>50]; sub

scripts denote as follows: cr = critical value for entrainment; pred 
= predicted from roughness algorithm; and 'obs' = required to 
transport the observed flux; and 

<)> = dimensionless transport rate. 
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