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Fig. 1. - Changes in cross-sectional form with stage in the Ajax Bend Study Reach, Missis­
sippi River (2). Symbols are to denote separate lines, not to indicate place of meas­
urement. 

DISTANCE ACROSS CHANNEL, m 

Fig. 2 - Changes in cross-sectional form with stage in the Muddy Creek, Wyoming study 
bend (4-7). Symbols are to denote separate lines, not to indicate place of measure­
ment. 

on Muddy Creek, Wyoming. Fig. 2 demonstrates that during a falling stage the point bar top is 
eroded and the point bar face and pool aggrades. In both channels the general cross-sectional 
form is preserved by a systematic pattern of erosion and deposition. 

The purpose of this paper is to explore the consequences of bed morphology adjustment 
on the magnitude and distribution boundary shear stress and bedload transport at high and low 
flow in a sand-bedded river meander. 

Study Site and Field Methods 

Muddy Creek is a lowland tributary to the Upper Green River in western Wyoming. Dur­
ing the spring snowmelt runoff irrigation outflow is diverted into the channel providing long 
periods of nearly constant discharge. For three of the four years between 1976-1979, this 
discharge was about 1.1m /sec, and in those years the bed morphology through the study reach 
was identical. Channel and flow properties were measured carefully during these high flow 
years and the measurement procedures are described elsewhere (4-7). 
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PROPORTION OF CHANNEL WIDTH FROM LEFT BANK 

Fig. 3 - Ratio of local boundary shear stress to average for the entire reach for two sections 
across the Muddy Creek study bend during low flow. 

flow year 92 velocity measurements taken at 2 cm above the bed at seven cross-sections were 
used. 

Table 1 and Fig. 3 compare the magnitude and distribution of three scales of boundary 
shear stress for the low flow conditions. Values reported in Table 1 represent the average for 
the study reach. As expected, rbs is less than rbf which is smaller than T^. An estimate of the 
form drng effect causing the difference between rbs and rbf can be made using the Smith and 
McLean equation,(9): 

_ _ . 1 + _ _ l n f l 3 _ | (4) 

Here T„+, and T„ correspond to rv and tbs\ H and \ are the bedform amplitude and 
wavelength; r„ is the roughness parameter associated with T„; CD is a drag coefficient equal to 
0.212 for separated flow and 0.840 for unscparated flow, a3 is a boundary layer growth 
coefficient equal to 0.0995, and K is von Karman's constant. Values of H/\ and \ are given in 
Table 1. The roughness parameter z„, determined empirically, was equal to about 0.01 cm. 
The How separates in the lee of bedforms, so C„- 0.212 should be used. 
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Table 1. - Estimates of boundary shear stress 
Discharge, in 
cubic meters 
per second 

(1) 
0.3 
1.1 

A, in 
meters 

(2) 
1.05 
1.47 

~njr 

(3). 

.07 

.07 

*ta, in 
dynes per 

square 
centimeters 

(4) 
12 
15 

TJ,/, in 
dynes per 

square 
centimeters 

_CS)_ 

22 
30 

Table 2. - Predicted boundary shear stress ratios 
Discharge, in 
cubic meters 
per second 

(1) 
0.3 
1.1 

(2) 
1.8 
2.0 

(3) 
2.2 
2.3 

(4) 
1.2 
1.8 

predicted 

(5) 
1.3 
1.5 

Predicted ratios (Table 2) from Eq. (4) are about 20% greater than observed for both low 
and high flow, a small difference considering the approximate nature of both the measurements 
and calculations. Eq. (4) can also be used to estimate the ratio of total boundary shear stress rh 
to the shear stress corresponding to form drag over bedforms, rhf. The effects of channel cur­
vature and the inertial terms arising from the three-dimensionality of the bar-pool topography 
are not included in this calculation; therefore, it should be an underestimation. In Eq. (4) wc 
have used Hl\ — .016 and .028 for low and high flow, respectively; \ — 25 m and z„ — .135 
and .171 for low and high flow. The roughness parameter values were computed from the velo­
city profile data. Table 2 shows that the predicted values decrease with stage, as do the 
observed ones, and that they are within 20% of the observed. As expected, the high flow pred­
iction underestimates the measured shear stress ratio. The low flow prediction, however, is 
slightly higher, suggesting that curvature and three-dimensional bed topography effects arc 
smaller at this reduced stage. 

In Fig. 3 the ratio of observed local boundary shear stress to the average reported in Tabic 
1 is plotted according to position across the channel for two cross-sections. In the upstream 
part of the bend (section 18) the pattern of cross-stream variation in total boundary shear 
stress, as computed from Eq. (1) differs greatly from that found for T V or rbs. As mentioned 
above, the convective acceleration terms in this part of the channel are significant but have not 
been included in Eq. (1); inclusion of these terms would yield a different structure to the field. 
Some of these differences are discussed in our other paper in this volume. 

Previously we have pointed out that for the high flow case as well (4), the boundary shear 
stress field computed from Eq. (1) and determined from near-bed velocity profiles differed con­
siderably in the upstream part of the bend. In the downstream part of the bend, the general 
structure of the boundary shear stress fields are similar, although in detail important differences 
still exist. For example, the cross-channel position of maximum boundary shear stress is 
further toward the outside bank for rbt versus rbs and rbs versus T V (Fig. 3). In addition, Fig. 
3 and low flow data from other cross-sections show an outward shift through the bend of the 
zone of maximum boundary shear stress causing sediment transport. Similar outward shifting 
has been documented for the high flow case (7) and has been observed in flumes by others 
(8,10). 
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Vdlmcnt Transport 
During high flow, the zone of maximum bedload transport shifted outward through the 

»<nd with the maximum boundary shear stress zone (7). Data on bedload transport at this 
wje arc reported in the other paper by us in this volume. Bedform migration and geometry 
»c;c recorded simultaneously with near-bed velocity measurements in the low-flow year. In 
parts of the study reach, bedform geometry was repeatedly recorded over one to two hour inter­
n s to provide additional data from which an estimate of the bedload transport field could be 
irudc. All measurements were taken from wooden bridges placed across the channel. At eight 
xctions, a total of 237 bedform migration observations were used to construct the bedload 
transport field. 

As in the high flow case, the zone of maximum bedload transport shifted outward through 
the bend (Figs. 4,5). Over 80% of the bedload in transport travelled to the right (closer to the 
msidc bank) of the centerline in the upstream part of the bend (section 14). In the down­
stream portion of the bend, over 50% travelled to the left (closer to the outside bank) of the 
centerline (section 23). Shoaling and near-bed outward flow over the point bar top, rolling and 
ivalanching on the point face and on the cross-stream sloping avalanche faces of bedforms, and 
troughwise transport along obliquely-oriented bedforms all contributed to the net cross-stream 
transport. 

The boundary shear stress responsible for sediment transport, rbs, was used in the Yalin 
bedload equation to compute the bedload transport field at each of eight sections in both the 
high and low flow cases. The average bedload transport for the eight sections was 129 and 58 
gm/sec for the high and low flow, respectively. The predicted bedload transport fields for indi­
vidual sections closelv matched the observed at high and low flow and the average was 123 
gm/sec and 60 gm/sec, respectively, less than 3% smaller than observed (Fig. 5). The data 
points, shown in Fig. 5, are the average of all measurements in segments 0.2 channel widths 
across. The structure of the bedload transport field was generally well-predicted, confirming 
that the bulk of the bed particles in transport must shift outward through the bend. 

Although the total discharge in the channel decreased by a factor of four and the boun­
dary shear stress reduced by one-half, the observed bedload transport rates decreased by only 
about 2 times, from 129 to 58 gm/sec. The data in Tables 1 and 2 and the cross-section in Fig. 
2 suggest an explanation for the relatively small reduction in bedload transport. At high flow 
the pool is deep and the top of the point bar has aggraded sufficiently to cause net outward 
bedload transport. This bar-pool topography with a point bar face oblique to the mean flow 
direction generates a large form-drag on the flow. Large convective-acceleration force terms 
develop (6). Nearly one-half of the total boundary shear stress is expended on large-scale resis-
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Bedload transport computed from bedform migration studies at four sections across 
Muddy Creek during low flow. 





638 
RIVER MEANDERING 

X-14 

no data for prediction 

^ 0 ,2 .4 .6 .8 1.0 0 .2 .4 .6 .8 1.0 

i o 
to p 

§ .i 

X - I O 

observed 

\ =ẑ -
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Fig. 5- Predicted and observed bedload transport fields during low flow conditions. 

tance due to channel topography (including curvature). As the stage drops net transport into 
the pool leads to aggradation there and erosion of the point bar top. The overall form of the 
bar-pool topography is reduced, but the wavelength, imposed by the high flow controlled chan­
nel curvature, is maintained and to a lesser degree so is the width. In addition the mean velo­
city and probably the magnitude of the convective acceleration force terms are reduced. As a 
consequence less of the total boundary shear stress is spent on large scale form resistance and 
proportionately more is available for bedform and sediment transport resistance. Adjustments 
in bedform morphology from high to low flow produced the same ratio of crest height to 
wavelength (///X) such that the form drag loss in the high and low channels was about the 
same. The effects when combined led to only a 25% reduction in the boundary shear stress 
available for sediment transport hence a relatively small reduction in observed bedload tran­
sport. 
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Conclusion 
In cases where the bed morphology in a river meander is in near equilibrium with the 

discharge, the general patterns of boundary shear stress and bedload transport at high and low 
(low are essentially the same. The bedload transport maximum shifts from near the inside bank 
toward the outside bank, tracking the outward shifting zone of maximum boundary shear stress. 
Similar observations were made by Hooke (8) in his study of boundary shear stress and bedload 
transport in a laboratory river meander. 

Important morphological adjustments must occur during a stage change because of 
topographically-induced convergences or divergences of sediment transport associated with 
downstream variation of the boundary shear stress. During stage decline these imbalances will 
lead to deposition in the pool and erosion of the point bar such that the average form of the 
cross-section tends to be preserved. The reduced form resistance may lead to relatively small 
changes in the boundary shear stress causing bedload transport. It is now common practice to 
incorporate a procedure for computing the resistance due to mobile bedforms when attempting 
to compute the bedload transport or channel depth in a reach of river based on average channel 
properties (3). Our observations suggest that in a sand-bedded river, bar-pool topography 
exerts a considerable form drag at high flow, but at low flow, due to morphologic adjustments, 
this resistance may be much less significant. This stage dependent large-scale form resistance 
also should be accounted for in bedload transport calculation procedures. 
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