DocuBase  

 

TITLE: Experimental evidence for the conditions necessary to sustain meandering in coarse-bedded rivers
AUTHOR: Christian A. Braudricka,1, William E. Dietricha,1, Glen T. Leverichb,c, and Leonard S. Sklarb
NOTES: aDepartment of Earth and Planetary Science, University of California Berkeley, Berkeley, CA 94720; bDepartment of Geosciences, 509 Thornton Hall, San Francisco State University, San Francisco, CA 94132; and cStillwater Sciences, Berkeley, CA 94705
ABSTRACT: Meandering rivers are common on Earth and other planetary surfaces, yet the conditions necessary to maintain meandering channels are unclear. As a consequence, self-maintaining meandering channels with cutoffs have not been reproduced in the laboratory. Such experimental channels are needed to explore mechanisms controlling migration rate, sinuosity, floodplain formation, and planform morphodynamics and to test theories for wavelength and bend propagation. Here we report an experiment in which meandering with near-constant width was maintained during repeated cutoff and regeneration of meander bends. We found that elevated bank strength (provided by alfalfa sprouts) relative to the cohesionless bed material and the blocking of troughs (chutes) in the lee of point bars via suspended sediment deposition were the necessary ingredients to successful meandering. Varying flood discharge was not necessary. Scaling analysis shows that the experimental meander migration was fast compared to most natural channels. This high migration rate caused nearly all of the bedload sediment to exchange laterally, such that bar growth was primarily dependent on bank sediment supplied from upstream lateral migration. The high migration rate may have contributed to the relatively low sinuosity of 1.19, and this suggests that to obtain much higher sinuosity experiments at this scale may have to be conducted for several years. Although patience is required to evolve them, these experimental channels offer the opportunity to explore several fundamental issues about river morphodynamics. Our results also suggest that sand supply may be an essential control in restoring self-maintaining, actively shifting gravel-bedded meanders.
COLLECTION: Dietrich
ID: 214

YOU CAN VIEW THIS DOCUMENT IN THE FOLLOWING WAYS:

  • PDF (from the DocuBase repository)



    Search DocuBase

    Edit this document

  • Back to DocuBase

    BNHM      University of California, Berkeley